RG-Coaxial Cable

Multimedia Coaxial Cable **SAT-Coaxial Cable** RGB-COAX-CY/RGB-COAX-(ST) Y Halogen-Free RG-Coaxial Cables

Description	Properties	Page
RG-Coaxial Cables		338
RG-Coaxial Cables		339
RG-Coaxial Cables		340
Halogen-Free RG-Coaxial Cables		341
CATV-Cables		342
SAT-Coaxial Cables	up to 2150 MHz, for satellite-receivers, double screened	343
Multimedia-Coaxial Cables	SAT 1,0/4,6GH, up to 2400MHz, for digital-tv, double screened, screening efficieny >90dB	344
SAT-Coaxial Cables	for digital-tv, screening efficieny >90dB / >95dB, for satellite-receivers, double screened	345
RGB-COAX-CY / RGB-COAX-(St)Y	transmission cables for colour monitor	346

Μ

RG-Coaxial Cables

RoHS						6 01151
Type Part no.	RG 6 A/U 40001	RG 11 A/U 40002	RG 58 C/U 40003	RG 59 B/U 40004	RG 62 A/U 40005	RG 71 B/U 40006
Cable structure						
Inner conductor diameter mm	1 x 0,7	7 x 0,4	19 x 0,2	1 x 0,6	1 x 0,6	1 x 0,6
	Steel/copper, bare	Tinned copper	Tinned copper	Steel/copper, bare	Steel/copper, bare	Steel/copper, bare
Insulation Ø mm	4,7 PE	7,3 PE	2,95 PE	3,7 PE	3,7 PE, hollow	3,7 PE, hollow
Outer conductor	2 braids Silvered copper Copper, bare	Braid Copper, bare	Braid Tinned copper	Braid Copper, bare	Braid Copper, bare	2 braids Copper, bare Tinned copper
Outer sheath	PVC	PVC	PVC	PVC	PVC	PVC
Min. bending radius approx. mm	40	50	25	30	30	30
Temperature range °C	-35 to +80	-35 to +80	-35 to +80	-35 to +80	-35 to +80	-50 to +70
Copper weight kg/km	72,0	58,0	29,0	28,0	28,0	48,0
Outer Ø approx. mm	8,4	10,3	5,0	6,2	6,2	6,2
Weight approx. kg / km	115	140	38	57	52	62
Electrical characteristics						
Impedance (Ohm)	75 ± 3	75 ± 3	50 ± 2	75 ± 3	93 ± 5	93 ± 3
Frequency range	2	2	2	2	2	2
f (max.) GHz	3	3	3	3	3	3
Propagation velocity v/c Attenuation at 20°C	0,7	0,7	0,7	0,7	0,8	0,8
(db/100m) 100 MHz	8,8	7,5	17	11,5	10,5	10,5
200 MHz	13,5	11	24	16,5	15	10,5
500 MHz	21	18,5	39	27	24,5	24,5
800 MHz	27,5	24	59	35	32,5	32,5
1000 MHz	27,5	30	56	41	32,5	32,0
1350 MHz	-	-	-	-	-	-
1750 MHz	-	-				-
CapacitancenE/m	67	67	101	67	10 E	10 E

Dimensions and specifications may be changed without prior notice. (RM01)

67 67

10⁵

110

3

7

Note

• The materials used in manufacture are cadmium-free and contain no silicone and free from substances harmful to the wetting properties of lacquers.

101 67

10⁵

53

2

5

67 67

10⁵

171

4

7

42,5 83

10⁵

136

2

3

42,5 83

10⁵

155

1

3

• RG-Coaxial types are in accordance with US-Military specifications MIL-C-17.

67 67

10⁵

23

5

10

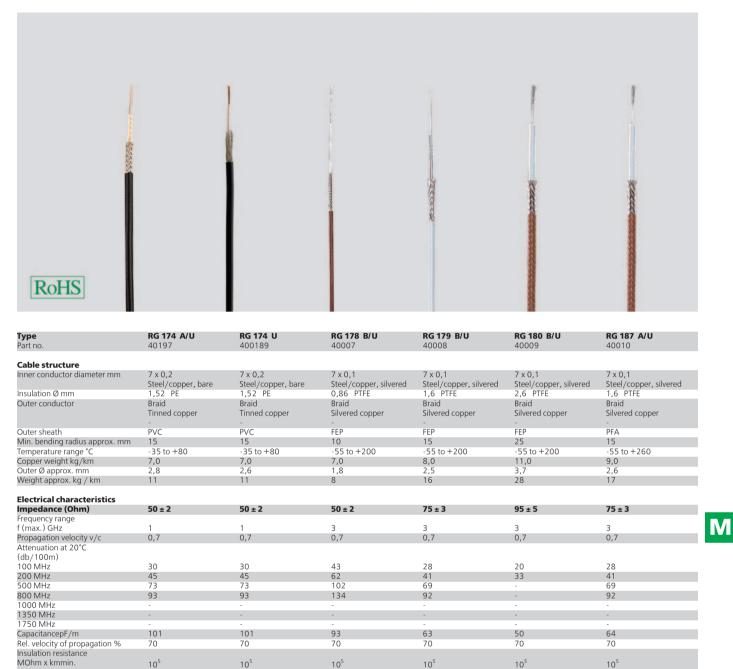
• RG/U: R=Radio, G=Guide, U=Utility

Application

CapacitancepF/m Rel. velocity of propagation % Insulation resistance

Nominal peak voltagekVs

MOhm x kmmin.


Loop resistance max. (Ohm/km)

Dielectric strength 50 HzkVeff

Coaxial cables are used in high frequency transmission, especially for transmitters and receivers, computers, radio and TV transmissions. The varied mechanical, thermal and electronic properties of Coaxial cables mean that they can be used up into the GHz levels, as per cable type.

RG-Coaxial Cables

2 Dimensions and specifications may be changed without prior notice.

360

Note

Loop resistance max. (Ohm/km)

Dielectric strength 50 HzkVeff

Nominal peak voltagekVs

• The materials used in manufacture are cadmium-free and contain no silicone and free from substances harmful to the wetting properties of lacquers.

840

2

840

2

840

1

2

860

1

2

• The colour at FEP and PFA outer sheath is brown or white as per production outlet.

360

2

- RG-Coaxial types are in accordance with US-Military specifications MIL-C-17.
- RG/U: R=Radio, G=Guide, U=Utility

Application

Coaxial cables are used in high frequency transmission, especially for transmitters and receivers, computers, radio and TV transmissions. The varied mechanical, thermal and electronic properties of Coaxial cables mean that they can be used up into the GHz levels, as per cable type.

339

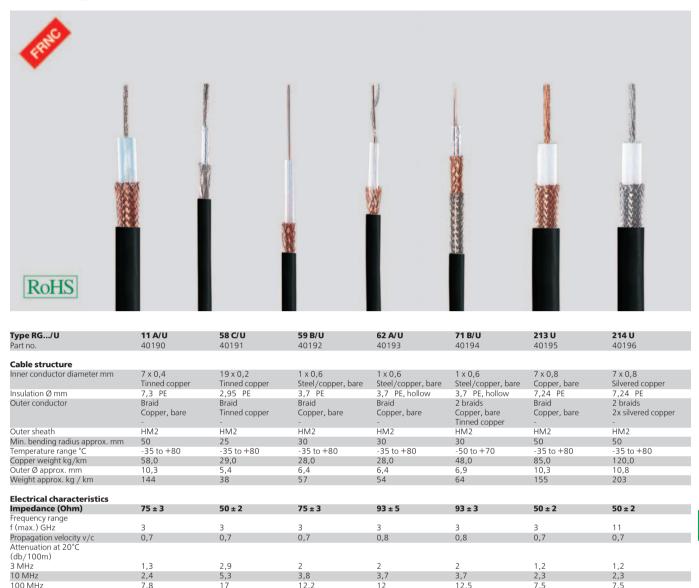
RG-Coaxial Cables

1		13	1	1	1	1
					ł.	
			18 Martin	R. W.		
		S.			- M	L.
			KA I			
land the second s		en stat fr				
						8
		1				N.
28						1
RoHS						
Туре	RG 213	RG 214 U	RG 217	RG 218	RG 223 U	RG 316 B/U
Part no.	40012	40011	40200	40201	40202	40203
Cable structure						
Inner conductor diameter mm	7 x 0,8	7 x 0,8	1 x 2,7	1 x 4,95	1 x 0,9	7 x 0,2
Insulation Ø mm	Copper, bare 7,24 PE	Silvered copper 7,24 PE	Copper, bare 9,4 PE	Copper, bare 17,3 PE	Silvered copper 2,95 PE	Steel/copper, silvered 1,52 PTFE
Outer conductor	Braid	2 braids	2 braids	Braid	2 braids	Braid
	Copper, bare	2x silvered copper	Copper, bare	Copper, bare	2x silvered copper	Silvered copper
Outer sheath	PVC	PVC	PVC	PVC	PVC	PTFE/ alt. FEP
Min. bending radius approx. mm Temperature range °C	50 -35 to +80	50 -35 to +80	70 -35 to +80	110 -35 to +80	25 -35 to +80	15 -55 to +200
Copper weight kg/km	85,0	120,0	187,0	348,0	44,0	9,0
Outer Ø approx. mm Weight approx. kg / km	10,3 159	10,8 198	13,84 300	22,1 710	5,2 60	2,5 15
weight approx. kg / km	159	190	500	710	00	15
Electrical characteristics Impedance (Ohm)	50 ± 2	50 ± 2	50 ± 2	50 ± 2	50 ± 2	50 ± 2
Frequency range	50 E 2	50 E 2	JU I 2	JU 1 2	JU ± 2	
f (max.) GHz	3 0,7	11 0,7	3 0,66	3 0,66	3 0,7	3 0,7
Propagation velocity v/c Attenuation at 20°C	0,7	0,7	0,66	0,00	0,7	0,7
(db/100m)	7	7	4.0	2.0	17	20
100 MHz 200 MHz	7	7	4,8	2,9	17 23	28 40
500 MHz	10.2	10.2	/.1	4.5		
800 MHz	10,2 17	10,2 17	7,1 12,3	4,5 8,1	38	68
1000 MHz 1350 MHz	17 23 - -	17 23 -	12,3 16,8 - -	8,1 11,2 -	38 50 - -	68 90 - -
1000 MHz 1350 MHz 1750 MHz	17 23 - -	17 23 - -	12,3 16,8 - -	8,1 11,2 - -	38 50 - -	68 90 - -
1000 MHz 1350 MHz 1750 MHz CapacitancepF/m Rel. velocity of propagation %	17 23 - -	17 23 -	12,3 16,8 - -	8,1 11,2 -	38 50 - -	68 90 - -
1000 MHz 1350 MHz 1750 MHz CapacitancepF/m Rel. velocity of propagation % Insulation resistance	17 23 - - 101 100	17 23 - - 101 67	12,3 16,8 - - 101 100	8,1 11,2 - - 101 100	38 50 - - 101 67	68 90 - - 95 70
1000 MHz 1350 MHz 1750 MHz CapacitancepF/m Rel. velocity of propagation % Insulation resistance MOhm x kmmin.	17 23 - - 101	17 23 - - 101	12,3 16,8 - - 101 100 10 ⁵	8,1 11,2 - - 101 100 10 ⁵	38 50 - - 101	68 90 - - 95
1000 MHz 1350 MHz CapacitancepF/m Rel. velocity of propagation % Insulation resistance MOhm x kmmin. Loop resistance max. (Ohm/km)	17 23 - - 101 100 10 ⁵ 10	17 23 - - 101 67 10 ⁵ 10	12,3 16,8 - - 101 100 10 ⁵ 5	8,1 11,2 - - 101 100 10 ⁵ 2	38 50 - - 101 67 10 ⁵ 36	68 90 - - 95 70 10 ⁵ 310
1000 MHz 1350 MHz CapacitancepF/m Rel. velocity of propagation % Insulation resistance Mohm x kmmin. Loop resistance	17 23 - - 101 100 10 ⁵	17 23 - - 101 67 10 ⁵	12,3 16,8 - - 101 100 10 ⁵	8,1 11,2 - - 101 100 10 ⁵	38 50 - - 101 67 10 ⁵	68 90 - - 95 70 10 ⁵

Dimensions and specifications may be changed without prior notice.

Note

• The materials used in manufacture are cadmium-free and contain no silicone and free from substances harmful to the wetting properties of lacquers.


- The colour outer sheath at PTFE is brown or transparent as per production outlet.
- RG-Coaxial types are in accordance with US-Military specifications MIL-C-17.
- RG/U: R=Radio, G=Guide, U=Utility

Application

Coaxial cables are used in high frequency transmission, especially for transmitters and receivers, computers, radio and TV transmissions. The varied mechanical, thermal and electronic properties of Coaxial cables mean that they can be used up into the GHz levels, as per cable type.

Halogen-Free RG-Coaxial Cables

000 101112	23,4	47,0	JJ,Z	54,0	54,0
CapacitancepF/m	68	0	68	42,5	42,5
Rel. velocity of propagation %	67	67	67	43	43
Insulation resistance					
MOhm x kmmin.	10 ⁵				
Loop resistance					
max. (Ohm/km)	23	53	171	155	136
Nominal peak voltagekVs	5	2	2	1	1
Dielectric strength					
50 HzkVeff	10	5	7	3	з

24,4

. 39,2

47,8

17,6

35,2

Dimensions and specifications may be changed without prior notice. (RM01)

11,3

18,7

23,4

Note

100 MHz

200 MHz

500 MHz

800 MHz

• The materials used in manufacture are cadmium-free and contain no silicone and free from substances harmful to the wetting properties of lacquers. • H-outer sheath = halogen-free material (HM2)

17,3

24,7

34,6 42,5

12 5

17,3

24,7

34,6 42,5

10,9

17,2 22,6

101

10⁵ 10 5

10

10,9

22,6

101 10⁵

10

10

- RG-Coaxial types are in accordance with US-Military specifications MIL-C-17.
- RG/U: R=Radio, G=Guide, U=Utility
- FRNC = Flame Retardant Non-Corrosive

Application

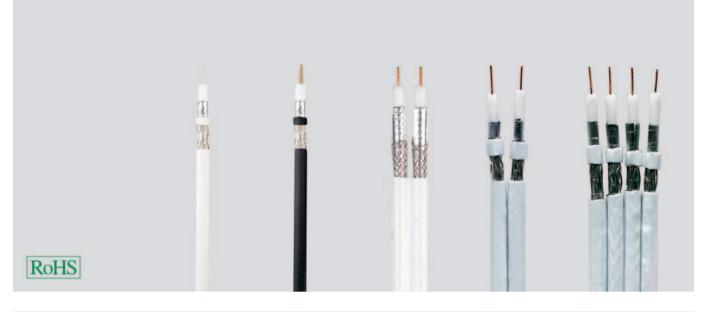
Coaxial cables are used in high frequency transmission, especially for transmitters and receivers, computers, radio and TV transmissions where no flame propagation under behaviour in fire is permitted. The varied mechanical, thermal and electronic properties of Coaxial cables mean that they can be used up into the GHz levels, as per cable type.

CATV-Cables with alu- or copper foil and braiding

			NING		1	1	4	
	1	-	1100		1	II.		
		274		199	-			-
	I	12.01			5	5	9	5
					2	2	2	2
	- Alle							
RoHS								
KOHS					iKx	nKx	qKx	sKx
ed as		Underground		Underground		nd BK-Undergroun		
pe	0.7/4.4 ALG	1.1/7.3 ALG	1.1/7.3 ALG-T	1.8/11.5 FG	A-2YK2Y1 iKx 1.1/7.3	A-2Y0K2Y1 nKx 2.2/8.8	A-2Y0K2Y1 qKx 3.3/13.5	A-2Y0K2Y1 sKx 4.9/19.4
rt no.	40135	40139	40140	40141	40142	40143	40144	40179
ble structure her conductor diameter mm	0,7	1,1	1,1	1,8	1,1	2,2	3,3	4,9
ulation Ø mm	Copper, bare 4,4 PE	Copper, bare 7,3 PE	Copper, bare 7,3 PE	Copper, bare 11,5 PE	Copper, bare 7,3 PE	Copper, bare 8,8 PE, hollow	Copper, bare 13,5 PE, hollow	Copper, bare 19,4 PE, hol
ter conductor	Polyester foil coated with	Polyester foil coated with	Polyester foil coated with	Copper tape	Copper tube, welded	Copper tube, welded	Copper tube, welded	Copper tube, welded
			th aluminium on bot sides	h	Weided	Welded	Welded	Welded
	Braid	Braid	Braid	Braid	-	-	-	-
ter sheath	PVC	- PE	PE	- PE	PE	PE	PE	PE
eath colour ter Ø approx. mm	white 6,6	black 10,5	black 2,8	black 15,0	black 11,0	black 12,5	black 17,0	black 24,4
n. bending radius approx. mm ain/suspending wire N	35	100	150 5500	150	160	200	300	400
eight approx. kg / km	44	98	177	218	142	183	347	500
ctrical characteristics								
pedance (Ohm) bacitancepF/m	75 ± 3 67	75 ± 3 67	75 ± 3 67	75 ± 3 67	75 ± 2 65	75 ± 2 51	75 ± 1 51	75 ± 1 50
pagation velocity v/c enuation at 20°C	0,7	0,7	0,7	0,7	0,7	0,88	0,88	0,89
o/100m)								
0 MHz 0 MHz	9 12	5,2 7,3	5,2 7,3	3,5 5,2	5,4 7,9	2,8 4	1,9 2,7	1,3 1,9
0 MHz	21,2	12,6	12,6	9	12,9	6,6	4,4	3,1
0 MHz 0 MHz	27,5 30,5	16,8 18,8	16,8 18,8	12 13	17,3 18,9	8,4 9,3	5,7 6,3	4,1 4,4
50 MHz	37	23	23	-	-	-	-	-
50 MHz 50 MHz	43 47,5	27,7 30,2	27,7 30,2	-	-	-	-	-
uctural return loss min. (dB) betwee	en	50,2	50,2					
and 300 MHz	30	32	32	30	26	26	28	28
0 and 600 MHz 0 and 960 MHz	30 25	32 30	32 30	30 28	23 21	23 21	25 23	25 23
0 and 1750 MHz	23	27	27	25	-	-	-	-
resistance at 20°C		10.5	10.5		22		2.5	
er conductor max.Ohm/km ter conductor max.Ohm/km	47 23	18,5 11	18,5 11	7,3 6,5	22 3,1	5,6 3	2,5 2	1 1
reening efficiency (dB)								
and 100 MHz≥	75	80	80	80	110	110	110	110
0 and 500 MHz≥ 0 and 1000 MHz≥	75 75	85 85	85 85	85 85	110 110	110 110	110 110	110 110
10 and 1000 MHz≥	75	78	78	80	110	110	110	110
· · · · · ·	-	-	-		-	-	-	-
ost office approved	G670009A	G670011A	G622015B	G622010B	-			-

Dimensions and specifications may be changed without prior notice. (RM01)

Note


• The materials used in manufacture are cadmium-free and contain no silicone and free from substances harmful to the wetting properties of lacquers.

• BK-underground: broadband cable in accordance with FTZ 15 TV 11 (post cable)

 AL=Aluminium, ALPR=Polyesterfoil coated with Aluminium on both sides BK-cable=broadband communication cable, Cu=Copper, CuR=Cu-tube welded, CuW=Copperweld, F=Foil, G=Braid, PE=Polyethylene, PEH=Polyethylene air-space insulation, PVC=Polyvinylchloride

SAT-Coaxial Cables up to 2150 MHz, for satellite-receivers, double screened

Type Part no.	1,1/4,8 40150	1.65/7.2 ALG 40151	SAT-MINI 1 40159	DUO 2x0.7/2.9 40168	QUADRO 4x0.7/2.9 40169
Cable structure					
Inner conductor diameter mm	1,1 Tinned copper	1,6 Copper, bare	0,8 Copper, bare	0,65 Copper, bare	0,6 Copper, bare
Insulation Ø mm	5 Cell PE	7,2 Cell PE	3,5 Cell PE	3 Cell PE	3 Cell PE
Core colours	-	-	-	-	-
Outer conductor	Polyester foil coated with aluminium on both sides Braid				
Outer sheath	PVC	PE	PVC	PVC	PVC
Sheath colour	white	black	white	white	white
Outer Ø approx. mm	6,8	10.1	5,4 x 10,8	8,6 x 4,3	20.0 x 4.3
Min. bending radius approx. mm	50	60	40	35	80
Weight approx. kg / km	49	81	62	40	82
Electrical characteristics					
Impedance (Ohm)	75 ± 3	75 ± 3	75 ± 3	75 ± 3	75 ± 3
CapacitancepF/m	55	55	55	55	55
Propagation velocity v/c	0,8	0,82	0,82	0,8	0,8
Attenuation at 20°C					
(db/100m)					
100 MHz	5	3,7	8	8,9	8,9
200 MHz	7,3	5,1	11,5	13,5	13,5
500 MHz	13	9	18,5	22	22
800 MHz	17,2	11,8	23,5	28	28
950 MHz	19,5	13,6	25,5	31,5	31,5
1350 MHz	23,5	16,8	31	37	37
1750 MHz	27,6	19,7	35,5	42,3	42,3
2050 MHz	30	22	39,5	45,9	45,9
2150 MHz	31	22,5	43	50,4	50,4
Structural return loss min. (dB) between					
30 and 300 MHz	28	31	27	20	20
300 and 600 MHz	28	30	25	17	18
600 and 960 MHz	26	30	20	17	15
960 and 2050 MHz	24	28	20	-	-
DC resistance at 20°C					
Inner conductor max.Ohm/km	18	9	36	110	52
Outer conductor max.Ohm/km	20	12	28	22	26
Max. nominal voltage (V)	-	-	-	-	-
Screening efficiency (dB)					
50 and 100 MHz≥	75	80	78	75	75
100 and 500 MHz≥	75	85	78	75	75
500 and 1000 MHz≥	75	85	75	75	75
1000 and 2050 MHz≥	75	78	75	75	75
Post office approved	G670010A	G622016B	_		-
Copper weight kg/km	21,0	35,0	30,0	16.0	50.0
copper weight kg/ kin	21,0	55,0	50,0	10,0	50,0

Dimensions and specifications may be changed without prior notice. (RM01)

Note

• The materials used in manufacture are cadmium-free and contain no silicone and free from substances harmful to the wetting properties of lacquers.

AL=Aluminium, ALPR=Polyesterfoil coated with Aluminium on both sides

Cu=Copper, CuW=Copperweld, F=Foil, G=Braid, PE=Polyethylene, PEH=Polyethylene air-space insulation, PVC=Polyvinylchloride, vz=tinned

Multimedia-Coaxial Cables SAT 1, 0/4, 6GH, up to 2400MHz, for digital-tv,

double screened, screening efficieny >90dB

used as Type	inner/outer 1.0/4.6 GH-Y	Underground 1.0/4.6 GH-2Y 40177	Safety zones 1.0/4.6 GH-FRNC
Part no.	40176	40177	40178
Cable structure			
Inner conductor diameter mm	1 Copper with skin	1 Copper with skin	1 Copper with skin
Insulation Ø mm		PIB 4,6 Cell polyethylene with skin and PIE	
	coating	coating	PIB coating
Outer conductor		on Polyester foil coated with aluminium or	
	both sides	both sides	on both sides
Outer sheath	PVC	PE	FRNC
Sheath colour	white	black	grey
Outer Ø approx. mm	6,6	6,6	6,6
Approv. bending radius approx. mm	45	45	45
Weight approx. kg / km	40	40	40
Electrical characteristics			
Impedance (Ohm)	75 ± 1	75 ± 1	75 ± 1
CapacitancepF/m	55	55	55
Propagation velocity v/c	0,8	0,85	0,85
Attenuation at 20°C			
(db/100m)			
100 MHz	5,8	5,8	5,8
200 MHz	7,8	7,8	7,8
450 MHz	12,5	12,5	12,5
600 MHz	14,7	14,7	14,7
800 MHz	17,2	17,2	17,2
1000 MHz	19,1	19,1	19,1
1750 MHz	26,2	26,2	26,2
2050 MHz	28,5	28,5	28,5
2400 MHz	31,3	31,3	31,3
Structural return loss min. (dB) between			
30 and 300 MHz	30	30	30
300 and 600 MHz	32	32	32
600 and 960 MHz	31	31	31
960 and 1750 MHz	26	26	26
1750 and 2400 MHz	30	30	30
DC resistance at 20°C			
Inner conductor max.Ohm/km	18	18	18
Outer conductor max.Ohm/km	20	20	20
Max. nominal voltage (V)	-	-	-
	20	90	
Screening efficiency (dB) \geq	90	90	90

Dimensions and specifications may be changed without prior notice. (RM01)

Note

- The materials used in manufacture are cadmium-free and contain no silicone and free from substances harmful to the wetting properties of lacquers.
- FRNC=Flame Retardant Non Corrosive, PEE= Cell-Polyethylene, PIB= Polyisobutylene, ALPR=Polyesterfoil coated with Aluminium on both sides F=Foil, G=Braid, GH=Braid-covering ca. 88%

Application

- Copper inner-conductor 1,02 with skin-effect
- Protection against humidity and corrosion / Solid compound of dielectric. No change of position during installation in narrow bending radius. • Dielectric 4,6 mm Ø : - special PE-compound, foaming by GAS-INJEKTION
- Important improvement of propagation velocity values / Very high transmission speed of individual signals (presumption for Multimedia) / Improvement for the resistance to ageing / Reduction of attenuation-loss by approx. 2dB

• The over surface of dielectric consists too a skin-coating (smooth over surface) Protection against humidity and other chemical influences / Minimum impedance tolerance ± 2 Ohm / This coaxial cable is crimpable / Installation in narrow bending radius, no kinking risk / The transmission-loss of signals are hardly measurable to the advance in years / Additionally to the skin-effect, the dielectric contains a gel-coating (special PIB-cpmpound) / We therefore offer a **15 years guarantee for attenuation-loss** by installation at 20°C room-temperature

• Screening

a) AL/PR-foil, polyesterfoil coated with aluminium on both sides or b) Copper braiding of tinned wires, screening efficiency >90 dB

SAT-Coaxial Cables for digital-tv, screening efficieny >90dB / >95dB, for

satellite-receivers, double screened

							n	
A						FRNC	FRNC	11C
1						ш. С	•	<u></u>
	1		1		1		1	1
	1		1			0		Ô
			(#	L	1			
	N	(20)						然
				(254E)		0340		
RoHS								
used as Type	inner 0,7/2,9	inner/outer 0,7/4,5	inner/outer 0,8/3,5	inner 1, 1/5, 0	Underground 1.6/7,0	inner 1, 1/5, 0	inner/outer 1, 1/5, 0	inner 1.6/7.0
Part no.	40015	40016	40085	40017	40018	FRNC 40019	FRNC 40021	FRNC 40020
Cable structure	0,6	0,75	0,8	1,1	1,63	1,1	1,1	1,6
Insulation Ø mm	Copper, bare 3 Polyethylene,	Tinned copper	Copper, bare 3,5 Polyethylene,	Copper, bare	Copper, bare	Copper, bare	Copper, bare 4,8 Cell PE,	Copper, bare 7,1 Polyethylene,
Outer conductor	foamed ALPR-FG	foamed ALPR-FG	foamed ALPR-FG	foamed ALPR-FG	foamed ALPR-FG	foamed ALPR-FG	foamed ALPR-FG	foamed ALPR-FG
1st Screen - ALPR 2nd Screen - Cu-Braid	- foil Braid	- foil Braid	- foil Braid	- foil Braid	- foil Braid	- foil Braid	- foil Braid	- foil Braid
Outer sheath Sheath colour	PVC white	PVC white	PVC white	PVC white	PE black	FRNC white	FRNC black	FRNC white
Outer Ø approx. mm	4,3	6,6	5,0	6,9	10,3	6,8	6,8	10,0
Min. bending radius approx. mm Weight approx. kg / km	43 20	35 40	50 32	45 47	60 110	48 47	48 47	60 110
Electrical characteristics Impedance (Ohm)	75 ± 3	75 ± 3	75 ± 3	75 ± 2	75 ± 2	75 ± 2	75 ± 2	75±2
CapacitancepF/m	55	67	53	55	55	53	55	53
Propagation velocity v/c Attenuation at 20°C (db/100m)	0,8	0,66	0,8	0,8	0,85	0,8	0,8	0,8
100 MHz	8,1	7,1	6,3	4,9	3	4,7	4,9	3,8
200 MHz 450 MHz	13,3 20,9	10,4 16,8	11,5 17,1	7,7 11,6	6,1 9	/ 11,5	7,2 11,6	5,5 8,6
800 MHz 1000 MHz	- 31,5	25 27,4	- 26,5	- 18,9	- 14,3	17 18,1	- 18,9	12,1 13,2
1750 MHz	42,2	37,4	36,4	26,6	20,1	25	26,6	17,5
2050 MHz 2250 MHz	45,8 49,9	40,5 44,3	39,7 43,1	28,2 29,5	22,5 24	27,3 28	28,2 29,5	19 19,9
2400 MHz	55,5	45	-	31,9	-	29,3	31,9	22,5
Structural return loss min. (dB) between 30 and 300 MHz	20	20	35	25	40	25	40	25
300 and 600 MHz 600 and 960 MHz	18 16	18 18	35 30	18 17	35 35	18 17	40 35	18 17
960 and 1750 MHz	-	-	30	15	30	15	30	15
DC resistance at 20°C								
Inner conductor max.Ohm/km Outer conductor max.Ohm/km	52	110	36	18	9	18	18	9
Max. nominal voltage (V)	-	-	-	-	-	-	-	-
Screening efficiency (dB) 50 and 100 MHz≥	95	90	90	95	90	90	95	90
100 and 500 MHz≥	95	90	90	95	90	90	95	90
500 and 1000 MHz≥ 1000 and 2050 MHz≥	95 95	90 90	90 90	95 95	90 90	90 90	95 95	90 90
Copper weight kg/km	12,5	9,0	9,0	25,0	32,0	25,0	25,0	50,5

Dimensions and specifications may be changed without prior notice. (RM01)

Μ

RGB-COAX-CY / RGB-COAX-(St)Y transmission cables for colour

monitor

Technical data

- Base cable 0,37/1,5 or 0,6/3,7
- Temperature range fixed installation -10°C to +80°C flexing -5°C to +50°C
- Mutual capacitance 67 nF/km
- Impedance 75 Ohm
- Attenuation
- RGB-Coax 0,37/1,5 1 MHz = 2,0 dB/100 m2 MHz = 2,8 dB/100 m5 MHz = 4,0 dB/100 m10 MHz = 5,8 dB/100 m20 MHz = 8.4 dB/100 m50 MHz = 13,9 dB/100 m100 MHz = 19,8 dB/100m 200 MHz = 28,5 dB/100 mRGB-Coax 0,6/3,7 1 MHz = 1,1 dB/100 m2 MHz = 1,5 dB/100 m5 MHz = 2,5 dB/100 m10 MHz = 3,5 dB/100 m20 MHz = 4,5 dB/100 m50 MHz = 7,2 dB/100 m100 MHz = 10,4 dB/100 m200 MHz = 15,1 dB/100 m• Minimum bending radius
- 15x cable Ø

Cable structure RGB-COAX-CY ... x0, 37/1, 5

- Inner conductor bare copper, solid, conductor Ø 0,37 mm
- Dielectric (insulation) of cell-Polvethylene
- Outer conductor of tinned copper wire braiding
- PVC-sheath in colour red, green, blue for 3xRGB COAX red, green, blue, white, black for
- 5xRGB COAX
- 3 or 5 Coax twisted with optimal lay-length
- Foil taping
- Overall braid-screening, tinned copper with optimal surface coverage and drain-wire
- PVC-outer sheath, black

RGB-COAX-CY 3x0, 37/1, 5 + 3x0, 25

- Cable structure as per above, but with 3 additional control cores (3x0,25) in the interstices, colour brown, green, white
- RGB-COAX-(St)Y ... x0,6/3,7 (deviation)
- Inner conductor, bare copper, solid, conductor Ø 0,6 mm
- Outer conductor of tinned or bare copper wire braiding
- Foil taping
- Plastic coated aluminium foil and drain wire
- Outer sheath of PVC, green or black

Application

RGB cables are suitable for the transmission of both analogue and digital video signals. They are used particularly as connecting cables for data systems, engineering applications (CAD, high-definition graphics) and in television studios. The three main signals (red, green, blue) are transmitted separately. Depending on the application, it is possible to supply the base cable with further coaxial cables or with symmetrical signal cores for the intensity and horizontal or vertical synchronisation.

RGB-COAX-CY 0,37/1,5					RGB-COAX-(St)Y 0,6/3,7						
Part no.	No. RGB-Coax	Outer Ø	Сор.	Weight		Part no.	No. RGB-Coax	Outer Ø	Cop.	Weight	
	n x mm	approx. mm	weight kg / km	approx. kg / km			n x mm	approx. mm	weight kg/km	approx. kg/km	
40145	3 x 0,37/1,5	7,2	23,0	59,0		40148	3 x 0,6/3,7	16,0	66,0	278,0	
40147	3 x 0,37/1,5 + 3 x 0,25	8,2	60,5	89,0		40149	5 x 0,6/3,7	19,0	102,0	397,0	
40146	5 x 0.37/1.5	9.0	36.0	89.0							

Dimensions and specifications may be changed without prior notice. (RM01)

Properties

• The materials used in manufacture are cadmium-free and contain no silicone and free from substances harmful to the wetting properties of lacquers.

